Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Curr Protoc ; 4(4): e1015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597874

RESUMO

Recent development of hepatic organoids (HOs) derived from human pluripotent stem cells (hPSCs) provides an alternative in vitro model that can mimic the human liver detoxification pathway for drug safety assessment. By recapitulating the high level of maturity and drug-metabolizing capacity of the liver in a three-dimensional organoid culture, HOs may allow researchers to assess drug toxicity and metabolism more accurately than animal models or hepatocellular carcinoma cells. Although this promising potential has contributed to the development of various protocols, only a few protocols are available to generate functional HOs with guaranteed CYP450 enzymatic activity, the key feature driving toxic responses during drug metabolism. Based on previously published protocols, we describe an optimized culture method that can substantially increase the expression and activity of CYP450s, in particular CYP3A4, CYP2C9, and CYP2C19, in HOs. To generate mass-produced and highly reproducible HOs required as models for toxicity evaluation, we first generated hepatic endodermal organoids (HEOs) from hPSCs capable of in vitro proliferation and cryopreservation. The stepwise protocol includes generating HEOs as well as efficient methods to enhance CYP450 expression and activity in terminally differentiated HOs. Furthermore, we present a simple protocol for the assessment of HO cytotoxicity, one of the hallmarks of drug-induced acute hepatotoxicity. The protocols are relatively straightforward and can be successfully used by laboratories with basic experience in culturing hPSCs. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of hepatic endodermal organoids from human pluripotent stem cells Basic Protocol 2: Expansion and cryopreservation of hepatic endodermal organoids Basic Protocol 3: Differentiation of hepatic organoids from hepatic endodermal organoids Basic Protocol 4: Evaluation of hepatotoxicity using hepatic organoids Support Protocol: Human pluripotent stem cell culture.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Animais , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Diferenciação Celular , Linhagem Celular , Criopreservação
2.
Exp Mol Med ; 56(4): 987-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622197

RESUMO

Transcriptional programs governed by YAP play key roles in conferring resistance to various molecular-targeted anticancer agents. Strategies aimed at inhibiting YAP activity have garnered substantial interest as a means to overcome drug resistance. However, despite extensive research into the canonical Hippo-YAP pathway, few clinical agents are currently available to counteract YAP-associated drug resistance. Here, we present a novel mechanism of YAP stability regulation by MAP3K3 that is independent of Hippo kinases. Furthermore, we identified MAP3K3 as a target for overcoming anticancer drug resistance. Depletion of MAP3K3 led to a substantial reduction in the YAP protein level in melanoma and breast cancer cells. Mass spectrometry analysis revealed that MAP3K3 phosphorylates YAP at serine 405. This MAP3K3-mediated phosphorylation event hindered the binding of the E3 ubiquitin ligase FBXW7 to YAP, thereby preventing its p62-mediated lysosomal degradation. Robust YAP activation was observed in CDK4/6 inhibitor-resistant luminal breast cancer cells. Knockdown or pharmacological inhibition of MAP3K3 effectively suppressed YAP activity and restored CDK4/6 inhibitor sensitivity. Similarly, elevated MAP3K3 expression supported the prosurvival activity of YAP in BRAF inhibitor-resistant melanoma cells. Inhibition of MAP3K3 decreased YAP-dependent cell proliferation and successfully restored BRAF inhibitor sensitivity. In conclusion, our study reveals a previously unrecognized mechanism for the regulation of YAP stability, suggesting MAP3K3 inhibition as a promising strategy for overcoming resistance to CDK4/6 and BRAF inhibitors in cancer treatment.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Lisossomos , Proteólise , Proteínas Proto-Oncogênicas B-raf , Proteínas de Sinalização YAP , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Lisossomos/metabolismo , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosforilação , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Antineoplásicos/farmacologia
3.
Lab Invest ; 104(5): 102048, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490470

RESUMO

Yes-associated protein (YAP), an effector molecule of the Hippo signaling pathway, is expressed at high levels in cutaneous melanoma. However, the role of YAP in melanoma progression according to cellular localization is poorly understood. Tissues from 140 patients with invasive melanoma were evaluated by immunohistochemistry. Flow cytometry, western blotting, viability assays, wound healing assays, verteporfin treatment, and xenograft assays were conducted using melanoma cell lines B16F1 and B16F10 subjected to YapS127A transfection and siYap knockdown. Nuclear YAP localization was identified in 63 tumors (45.0%) and was more frequent than cytoplasmic YAP in acral lentiginous and nodular subtypes (P =.007). Compared with cytoplasmic YAP melanomas, melanomas with nuclear YAP had higher mitotic activity (P =.016), deeper invasion (P <.001), and more frequently metastasized to lymph nodes (P <.001) and distant organs (P <.001). Patients with nuclear YAP melanomas had poorer disease-free survival (P <.001) and overall survival (P <.001). Nuclear YAP was an independent risk factor for distant metastasis (hazard ratio: 3.206; 95% CI: 1.032-9.961; P =.044). Proliferative ability was decreased in siYapB16F1 (P <.001) and siYapB16F10 (P =.001) cells and increased in YapS127AB16F1 (P =.003) and YapS127AB16F10 (P =.002) cells. Cell cycle analysis demonstrated relative G1 retention in siYapB16F1 (P <.001) and siYapB16F10 (P <.001) cells and S retention in YapS127AB16F1 cells (P =.008). Wound healing assays showed that Yap knockdown inhibited cell invasion (siYapB16F1, P =.001; siYapB16F10, P <.001), whereas nuclear YAP promoted it (YapS127AB16F, P <.001; YapS127AB16F1, P =.017). Verteporfin, a direct YAP inhibitor, reduced cellular proliferation in B16F1 (P =.003) and B16F10 (P <.001) cells. Proliferative effects of nuclear YAP were confirmed in xenograft mice (P <.001). In conclusion, nuclear YAP in human melanomas showed subtype specificity and correlated with proliferative activity and proinvasiveness. It is expected that YAP becomes a useful prognostic marker, and its inhibition may be a potential therapy for melanoma patients.

4.
Toxicol Res ; 40(2): 273-283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525133

RESUMO

Smoking is a well-established risk factor for various pathologies, including pulmonary diseases, cardiovascular disorders, and cancers. The toxic effects of cigarette smoke (CS) are mediated through multiple pathways and diverse mechanisms. A key pathogenic factor is oxidative stress, primarily induced by excessive formation of reactive oxygen species. However, it remains unclear whether smoking directly induces systemic oxidative stress or if such stress is a secondary consequence. This study aimed to determine whether short-term inhalation exposure to CS induces oxidative stress in extrapulmonary organs in addition to the lung in a murine model. In the experiment, 3R4F reference cigarettes were used to generate CS, and 8-week-old male BALB/c mice were exposed to CS at a total particulate matter concentration of either 0 or 800 µg/L for four consecutive days. CS exposure led to an increase in neutrophils, eosinophils, and total cell counts in bronchoalveolar lavage fluid. It also elevated levels of lactate dehydrogenase and malondialdehyde (MDA), markers indicative of tissue damage and oxidative stress, respectively. Conversely, no significant changes were observed in systemic oxidative stress markers such as total oxidant scavenging capacity, MDA, glutathione (GSH), and the GSH/GSSG ratio in blood samples. In line with these findings, CS exposure elevated NADPH oxidase (NOX)-dependent superoxide generation in the lung but not in other organs like the liver, kidney, heart, aorta, and brain. Collectively, our results indicate that short-term exposure to CS induces inflammation and oxidative stress in the lung without significantly affecting oxidative stress in extrapulmonary organs under the current experimental conditions. NOX may play a role in these pulmonary-specific events.

5.
Clin Cancer Res ; 30(8): 1457-1465, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363333

RESUMO

PURPOSE: The study was to determine the activity and safety of the TGF-ß inhibitor vactosertib in combination with imatinib in patients with desmoid tumors. PATIENTS AND METHODS: In this investigator-initiated, open-label, multicenter, phase Ib/II trial, patients with desmoid tumors not amenable to locoregional therapies (surgery and/or radiotherapy) or with disease progression following at least one treatment were enrolled. Participants were administered 400 mg imatinib daily in combination with vactosertib (5 days on and 2 days off, twice a day) every 28 days. In phase Ib, the vactosertib dose was set at 100 mg (level -1) and 200 mg (level 1) to determine the recommended phase II dose (RP2D). Phase II assessed the efficacy, with the primary endpoint being progression-free rate (PFR) at 16 weeks. RESULTS: No dose-limiting toxicities were observed during phase Ib; therefore RP2D was defined at doses of 400 mg imatinib daily in combination with 200 mg vactosertib. Of the 27 patients evaluated, 7 (25.9%) achieved a confirmed partial response and 19 (70.4%) were stable. The PFR at 16 weeks and 1 year were 96.3% and 81.0%, respectively. Most toxicities were mild to moderate myalgia (n = 10, 37%), anemia (n = 10, 37%), and nausea (n = 9, 33.3%). Common grade 3 to 4 toxicities included neutropenia (n = 6, 22.2%) and anemia (n = 5, 18.5%). CONCLUSIONS: The vactosertib and imatinib combination was well tolerated, with promising clinical activity in patients with progressive, locally advanced desmoid tumors. This is the first study investigating a novel target agent, a TGF-ß inhibitor, in this rare and difficult-to-treat desmoid tumor.


Assuntos
Anemia , Fibromatose Agressiva , Triazóis , Humanos , Mesilato de Imatinib , Fibromatose Agressiva/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Anemia/tratamento farmacológico , Anemia/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
6.
Chem Biol Interact ; 391: 110903, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331335

RESUMO

This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.


Assuntos
Benzofenonas , Bromobenzenos , Doença Hepática Induzida por Substâncias e Drogas , Uridina Difosfato Ácido Glucurônico , Humanos , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato Ácido Glucurônico/farmacologia , Microssomos Hepáticos/metabolismo , Glucuronosiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lactamas/metabolismo , Lactamas/farmacologia , Glucuronídeos/metabolismo
7.
Sci Rep ; 14(1): 4319, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383711

RESUMO

In the field of drug discovery, natural products have emerged as therapeutic agents for diseases such as cancer. However, their potential toxicity poses significant obstacles in the developing effective drug candidates. To overcome this limitation, we propose a pathway-screening method based on imaging analysis to evaluate cellular stress caused by natural products. We have established a cellular stress sensing system, named Hepa-ToxMOA, which utilizes HepG2 cells expressing green fluorescent protein (GFP) fluorescence under the control of transcription factor response elements (TREs) for transcription factors (AP1, P53, Nrf2, and NF-κB). Additionally, to augment the drug metabolic activity of the HepG2 cell line, we evaluated the cytotoxicity of 40 natural products with and without S9 fraction-based metabolic activity. Our finding revealed different activities of Hepa-ToxMOA depending on metabolic or non-metabolic activity, highlighting the involvement of specific cellular stress pathways. Our results suggest that developing a Hepa-ToxMOA system based on activity of drug metabolizing enzyme provides crucial insights into the molecular mechanisms initiating cellular stress during liver toxicity screening for natural products. The pathway-screening method addresses challenges related to the potential toxicity of natural products, advancing their translation into viable therapeutic agents.


Assuntos
Regulação da Expressão Gênica , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células Hep G2 , Proteínas de Fluorescência Verde/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
8.
Yonsei Med J ; 65(2): 108-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288651

RESUMO

PURPOSE: With the revision of the Organ and Transplantation Act in 2018, the hand has become legal as an area of transplantable organs in Korea. In January 2021, the first hand allotransplantation since legalization was successfully performed, and we have performed a total of three successful hand transplantation since then. By comparing and incorporating our experiences, this study aimed to provide a comprehensive reconstructive solution for hand amputation in Korea. MATERIALS AND METHODS: Recipients were selected through a structured preoperative evaluation, and hand transplantations were performed at the distal forearm level. Postoperatively, patients were treated with three-drug immunosuppressive regimen, and functional outcomes were monitored. RESULTS: The hand transplantations were performed without intraoperative complications. All patients had partial skin necrosis and underwent additional surgical procedures in 2 months after transplantation. After additional operations, no further severe complications were observed. Also, patients developed acute rejection within 3 months of surgery, but all resolved within 2 weeks after steroid pulse therapy. Motor and sensory function improved dramatically, and patients were very satisfied with the appearance and function of their transplanted hands. CONCLUSION: Hand transplantation is a viable reconstructive option, and patients have shown positive functional and psychological outcomes. Although this study has limitations, such as the small number of patients and short follow-up period, we should focus on continued recovery of hand function, and be careful not to develop side effects from immunosuppressive drugs. Through the present study, we will continue to strive for a bright future regarding hand transplantation in Korea.


Assuntos
Transplante de Mão , Humanos , Transplante de Mão/efeitos adversos , Transplante de Mão/métodos , Transplante Homólogo/efeitos adversos , Imunossupressores/uso terapêutico , Institucionalização , República da Coreia , Rejeição de Enxerto
9.
Nat Commun ; 15(1): 685, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263321

RESUMO

We aimed to determine the activity of the anti-VEGF receptor tyrosine-kinase inhibitor, pazopanib, combined with the anti-PD-L1 inhibitor, durvalumab, in metastatic and/or recurrent soft tissue sarcoma (STS). In this single-arm phase 2 trial (NCT03798106), treatment consisted of pazopanib 800 mg orally once a day and durvalumab 1500 mg once every 3 weeks. Primary outcome was overall response rate (ORR) and secondary outcomes included progression-free survival (PFS), overall survival, disease control rate, immune-related response criteria, and safety. The ORR was 30.4% and the trial met the pre-specified endpoint. The median PFS was 7.7 months (95% confidence interval: 5.7-10.4). The common treatment-related adverse events of grades 3-4 included neutropenia (9 [19.1%]), elevated aspartate aminotransferase (7 [14.9%]), alanine aminotransferase (5 [10.6%]), and thrombocytopenia (4 [8.5%]). In a prespecified transcriptomic analysis, the B lineage signature was a significant key determinant of overall response (P = 0.014). In situ analysis also showed that tumours with high CD20+ B cell infiltration and vessel density had a longer PFS (P = 6.5 × 10-4) than those with low B cell infiltration and vessel density, as well as better response (50% vs 12%, P = 0.019). CD20+ B cell infiltration was identified as the only independent predictor of PFS via multivariate analysis. Durvalumab combined with pazopanib demonstrated promising efficacy in an unselected STS cohort, with a manageable toxicity profile.


Assuntos
Anticorpos Monoclonais , Indazóis , Pirimidinas , Sarcoma , Neoplasias de Tecidos Moles , Sulfonamidas , Humanos , Recidiva Local de Neoplasia
10.
Arch Pharm Res ; 46(11-12): 907-923, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048029

RESUMO

Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Feminino , Humanos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Lactatos/uso terapêutico , Células MCF-7 , Piruvatos/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
11.
Bioeng Transl Med ; 8(6): e10472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023714

RESUMO

Recent studies on osteosarcoma regimens have mainly focused on modifying the combination of antineoplastic agents rather than enhancing the therapeutic efficacy of each component. Here, an albumin nanocluster (NC)-assisted methotrexate (MTX), doxorubicin (DOX), and cisplatin (MAP) regimen with improved antitumor efficacy is presented. Human serum albumin (HSA) is decorated with thiamine pyrophosphate (TPP) to increase the affinity to the bone tumor microenvironment (TME). MTX or DOX (hydrophobic MAP components) is adsorbed to HSA-TPP via hydrophobic interactions. MTX- or DOX-adsorbed HSA-TPP NCs exhibit 20.8- and 1.64-fold higher binding affinity to hydroxyapatite, respectively, than corresponding HSA NCs, suggesting improved targeting ability to the bone TME via TPP decoration. A modified MAP regimen consisting of MTX- or DOX-adsorbed HSA-TPP NCs and free cisplatin displays a higher synergistic anticancer effect in HOS/MNNG human osteosarcoma cells than conventional MAP. TPP-decorated NCs show 1.53-fold higher tumor accumulation than unmodified NCs in an orthotopic osteosarcoma mouse model, indicating increased bone tumor distribution. As a result, the modified regimen more significantly suppresses tumor growth in vivo than solution-based conventional MAP, suggesting that HSA-TPP NC-assisted MAP may be a promising strategy for osteosarcoma treatment.

13.
Org Lett ; 25(19): 3471-3475, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37140886

RESUMO

A novel persulfate-mediated oxidative glycosylation system using p-methoxyphenyl (PMP) glycosides as bench-stable glycosyl donors is developed. This study shows that both K2S2O8 as an oxidant and Hf(OTf)4 as a Lewis acid catalyst play important roles in the oxidative activation of the PMP group into a potential leaving group. This convenient glycosylation protocol proceeds under mild conditions and delivers a wide range of biologically and synthetically valuable glycoconjugates, including glycosyl fluorides.

14.
Toxicol Res ; 39(2): 201-211, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37008694

RESUMO

Thioacetamide (TAA) was developed as a pesticide; however, it was soon found to cause hepatic and renal toxicity. To evaluate target organ interactions during hepatotoxicity, we compared gene expression profiles in the liver and kidney after TAA treatment. Sprague-Dawley rats were treated daily with oral TAA and then sacrificed, and their tissues were evaluated for acute toxicity (30 and 100 mg/kg bw/day), 7-day (15 and 50 mg/kg bw/day), and 4-week repeated-dose toxicity (10 and 30 mg/kg). After the 4-week repeated toxicity study, total RNA was extracted from the liver and kidneys, and microarray analysis was performed. Differentially expressed genes were selected based on fold change and significance, and gene functions were analyzed using ingenuity pathway analysis. Microarray analysis showed that significantly regulated genes were involved in liver hyperplasia, renal tubule injury, and kidney failure in the TAA-treated group. Commonly regulated genes in the liver or kidney were associated with xenobiotic metabolism, lipid metabolism, and oxidative stress. We revealed changes in the molecular pathways of the target organs in response to TAA and provided information on candidate genes that can indicate TAA-induced toxicity. These results may help elucidate the underlying mechanisms of target organ interactions during TAA-induced hepatotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00156-y.

15.
Exp Mol Med ; 55(5): 886-897, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121965

RESUMO

Genomic and transcriptomic profiling has enhanced the diagnostic and treatment options for many cancers. However, the molecular characteristics of parathyroid cancer remain largely unexplored, thereby limiting the development of new therapeutic interventions. Herein, we conducted genomic and transcriptomic sequencing of 50 parathyroid tissues (12 carcinomas, 28 adenomas, and 10 normal tissues) to investigate the intrinsic and comparative molecular features of parathyroid carcinoma. We confirmed multiple two-hit mutation patterns in cell division cycle 73 (CDC73) that converged to biallelic inactivation, calling into question the presence of a second hit in other genes. In addition, allele-specific repression of CDC73 in copies with germline-truncating variants suggested selective pressure prior to tumorigenesis. Transcriptomic analysis identified upregulation of the expression of E2F targets, KRAS and TNF-alpha signaling, and epithelial-mesenchymal transition pathways in carcinomas compared to adenomas and normal tissues. A molecular classification model based on carcinoma-specific genes clearly separated carcinomas from adenomas and normal tissues, the clinical utility of which was demonstrated in two patients with uncertain malignant potential. A deeper analysis of gene expression and functional prediction suggested that Wilms tumor 1 (WT1) is a potential biomarker for CDC73-mutant parathyroid carcinoma, which was further validated through immunohistochemistry. Overall, our study revealed the genomic and transcriptomic profiles of parathyroid carcinoma and may help direct future precision diagnostic and therapeutic improvements.


Assuntos
Adenoma , Carcinoma , Neoplasias das Paratireoides , Humanos , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/diagnóstico , Neoplasias das Paratireoides/patologia , Transcriptoma , Genômica , Carcinoma/metabolismo , Adenoma/diagnóstico , Adenoma/genética , Adenoma/patologia
16.
Front Pharmacol ; 14: 1067408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874001

RESUMO

The SARS-CoV-2 pandemic requires a new therapeutic target for viral infection, and papain-like protease (Plpro) has been suggested as a druggable target. This in-vitro study was conducted to examine the drug metabolism of the GRL0617 and HY-17542, Plpro inhibitors. Metabolism of these inhibitors was studied to predict the pharmacokinetics in human liver microsomes. The hepatic cytochrome P450 (CYP) isoforms responsible for their metabolism were identified using recombinant enzymes. The drug-drug interaction potential mediated by cytochrome P450 inhibition was estimated. In human liver microsomes, the Plpro inhibitors had phase I and phase I + II metabolism with half-lives of 26.35 and 29.53 min, respectively. Hydroxylation (M1) and desaturation (-H2, M3) of the para-amino toluene side chain were the predominant reactions mediated with CYP3A4 and CYP3A5. CYP2D6 is responsible for the hydroxylation of the naphthalene side ring. GRL0617 inhibits major drug-metabolizing enzymes, including CYP2C9 and CYP3A4. HY-17542 is structural analog of GRL0617 and it is metabolized to GRL0617 through non-cytochrome P450 reactions in human liver microsomes without NADPH. Like GRL0617 and HY-17542 undergoes additional hepatic metabolism. The in-vitro hepatic metabolism of the Plpro inhibitors featured short half-lives; preclinical metabolism studies are needed to determine therapeutic doses for these inhibitors.

17.
In Vivo ; 37(2): 862-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881068

RESUMO

BACKGROUND/AIM: Cutaneous melanoma, a melanocyte malignancy, can be divided into many clinical subtypes that differ in presentation, demographics, and genetic profile. In this study, we used next-generation sequencing (NGS) analysis to review genetic alterations in 47 primary cutaneous melanomas in the Korean population and compared them to alterations from melanomas in Western populations. PATIENTS AND METHODS: We retrospectively reviewed clinicopathologic and genetic features of 47 patients diagnosed with cutaneous melanomas between 2019-2021 at Severance Hospital, Yonsei University College of Medicine. NGS analysis was performed at diagnosis to evaluate single nucleotide variations (SNVs), copy number variations (CNVs), and genetic fusions. Genetic features in Western cohorts of melanoma were then compared with previous studies performed in the USA: Cohort 1 (n=556), Cohort 2 (n=79), and Cohort 3 (n=38). RESULTS: The most common histological classification of melanoma was the acral lentiginous type (23/47, 48.9%). BRAF V600 mutation was most frequent (11/47, 23.4%), but was significantly lower compared to Cohort 1 (240/556, 43.2%) and Cohort 2 (34/79, 43.0%) (p=0.0300). CNV analysis identified amplifications in chromosomes 12q14.1-12q15 (11/47, 23.4%) including CDK4 and MDM2 genes and 11q13.3 (9/47, 19.2%) including CND1, FGF19, FGF3, and FGF4 genes more frequently in the present study population than Cohort 1 (p<0.0001). CONCLUSION: These results clearly demonstrated differences in genetic alterations between melanomas in Asian and Western populations. Therefore, BRAF V600 mutation should be considered a significant signaling pathway explaining melanoma pathogenesis occurrence in both Asian and Western populations, whereas loss of chromosome 9p21.3 is unique to melanomas in Western populations.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Variações do Número de Cópias de DNA/genética , População do Leste Asiático , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Melanoma Maligno Cutâneo
18.
Stem Cell Res Ther ; 14(1): 19, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737811

RESUMO

BACKGROUND: The generation of liver organoids recapitulating parenchymal and non-parenchymal cell interplay is essential for the precise in vitro modeling of liver diseases. Although different types of multilineage liver organoids (mLOs) have been generated from human pluripotent stem cells (hPSCs), the assembly and concurrent differentiation of multiple cell types in individual mLOs remain a major challenge. Particularly, most studies focused on the vascularization of mLOs in host tissue after transplantation in vivo. However, relatively little information is available on the in vitro formation of luminal vasculature in mLOs themselves. METHODS: The mLOs with luminal blood vessels and bile ducts were generated by assembling hepatic endoderm, hepatic stellate cell-like cells (HscLCs), and endothelial cells derived entirely from hPSCs using 96-well ultra-low attachment plates. We analyzed the effect of HscLC incorporation and Notch signaling modulation on the formation of both bile ducts and vasculature in mLOs using immunofluorescence staining, qRT-PCR, ELISA, and live-perfusion imaging. The potential use of the mLOs in fibrosis modeling was evaluated by histological and gene expression analyses after treatment with pro-fibrotic cytokines. RESULTS: We found that hPSC-derived HscLCs are crucial for generating functional microvasculature in mLOs. HscLC incorporation and subsequent vascularization substantially reduced apoptotic cell death and promoted the survival and growth of mLOs with microvessels. In particular, precise modulation of Notch signaling during a specific time window in organoid differentiation was critical for generating both bile ducts and vasculature. Live-cell imaging, a series of confocal scans, and electron microscopy demonstrated that blood vessels were well distributed inside mLOs and had perfusable lumens in vitro. In addition, exposure of mLOs to pro-fibrotic cytokines induced early fibrosis-associated events, including upregulation of genes associated with fibrotic induction and endothelial cell activation (i.e., collagen I, α-SMA, and ICAM) together with destruction of tissue architecture and organoid shrinkage. CONCLUSION: Our results demonstrate that mLOs can reproduce parenchymal and non-parenchymal cell interactions and suggest that their application can advance the precise modeling of liver diseases in vitro.


Assuntos
Hepatopatias , Células-Tronco Pluripotentes , Humanos , Ductos Biliares , Citocinas/metabolismo , Células Endoteliais , Fibrose , Fígado , Organoides/metabolismo , Receptores Notch
19.
Yonsei Med J ; 64(2): 139-147, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36719022

RESUMO

PURPOSE: Glioblastoma (GBM) is a malignant brain tumor with poor prognosis. Radioresistance is a major challenge in the treatment of brain tumors. The development of several types of tumors, including GBM, involves the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Upon activation, this pathway induces radioresistance. In this study, we investigated whether additional use of selective inhibitors of PI3K isoforms would enhance radiosensitivity in GBM. MATERIALS AND METHODS: We evaluated whether radiation combined with PI3K isoform selective inhibitors can suppress radioresistance in GBM. Glioma 261 expressing luciferase (GL261-luc) and LN229 were used to confirm the effect of combination of radiation and PI3K isoform inhibitors in vitro. Cell viability was confirmed by clonogenic assay, and inhibition of PI3K/AKT signaling activation was observed by Western blot. To confirm radiosensitivity, the expression of phospho-γ-H2AX was observed by immunofluorescence. In addition, to identify the effect of a combination of radiation and PI3K-α isoform inhibitor in vivo, an intracranial mouse model was established by implanting GL261-luc. Tumor growth was observed by IVIS imaging, and survival was analyzed using Kaplan-Meier survival curves. RESULTS: Suppression of the PI3K/AKT signaling pathway increased radiosensitivity, and PI3K-α inhibition had similar effects on PI3K-pan inhibition in vitro. The combination of radiotherapy and PI3K-α isoform inhibitor suppressed tumor growth and extended survival in vivo. CONCLUSION: This study verified that PI3K-α isoform inhibition improves radiosensitivity, resulting in tumor growth suppression and extended survival in GBM mice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Tolerância a Radiação , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Isoformas de Proteínas/farmacologia , Apoptose
20.
Clin Pharmacol Ther ; 113(5): 1048-1057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36519932

RESUMO

The US Food and Drug Administration (FDA) guidance has recommended several model-based predictions to determine potential drug-drug interactions (DDIs) mediated by cytochrome P450 (CYP) induction. In particular, the ratio of substrate area under the plasma concentration-time curve (AUCR) under and not under the effect of inducers is predicted by the Michaelis-Menten (MM) model, where the MM constant ( K m ) of a drug is implicitly assumed to be sufficiently higher than the concentration of CYP enzymes that metabolize the drug ( E T ) in both the liver and small intestine. Furthermore, the fraction absorbed from gut lumen ( F a ) is also assumed to be one because F a is usually unknown. Here, we found that such assumptions lead to serious errors in predictions of AUCR. To resolve this, we propose a new framework to predict AUCR. Specifically, F a was re-estimated from experimental permeability values rather than assuming it to be one. Importantly, we used the total quasi-steady-state approximation to derive a new equation, which is valid regardless of the relationship between K m and E T , unlike the MM model. Thus, our framework becomes much more accurate than the original FDA equation, especially for drugs with high affinities, such as midazolam or strong inducers, such as rifampicin, so that the ratio between K m and E T becomes low (i.e., the MM model is invalid). Our work greatly improves the prediction of clinical DDIs, which is critical to preventing drug toxicity and failure.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Interações Medicamentosas , Preparações Farmacêuticas , Sistema Enzimático do Citocromo P-450/metabolismo , Rifampina/farmacologia , Midazolam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA